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molecular weight are obtained. As was dis­
cussed in connection with Fig. 1, they can 
be accurately calculated only if an exact knowl­
edge of all the admixtures and impurities present is 
available. 

Summary 

Diffusion through porous membranes of con­
stant properties is one of the simplest, quickest 
and most accurate methods of determining par­
ticle size or molecular weight of molecules larger 
than sucrose that are approximately spherical.30 

(30) Compare the calculation as to the probability of a spherical 
shape for palmitic acid in aqueous solution by Langmuir ["Colloid 
Chemistry, Theoretical and Applied," edited by J. Alexander, The 
Chemical Catalog Co., Inc., New York, 1926, Vol. 1, p. 538]. Pro-

I. Introduction 

If we consider electrolytic solutions in solvents 
of various dielectric constant, we first find, as the 
dielectric constant decreases, an increasing tend­
ency for the formation2 of ion pairs.8 As the di­
electric constant of the solvent is further decreased 
(or as concentration is increased), we next find it 
necessary to take into account configurations in 
which three4 specific ions are involved. The 
next step is the consideration of the interaction of 
four ions.6 This case becomes important at even 
moderate concentrations in solvents of low di­
electric constant, where the minimum in equi­
valent conductance appears at concentrations 
well below 0.001 N. (In such solvents, the mini­
mum indicates the concentration at which the 

(1) International Research Fellow. 
(2) "Formation of ion pairs" is a convenient and short way of 

expressing the fact that, when the potential energy tt/a-D of two 
oppositely charged ions at contact becomes large compared to the 
thermal energy kT, we find more and more configurations of ions in 
which two such ions spend a relatively large fraction of their ex­
istence very near to each other. The phrase does not imply the 
formation of chemically neutral molecules. There are cases where, 
after Coulomb forces have brought two ions into contact, the 
electrons in the two ions redistribute themselves in accordance 
with quantum restrictions, to form a hombpolar bond. Then in 
these cases the formation of the final neutral molecules cannot be 
described simply by means of Coulomb's law. 

(3) Fuoss and Kraus, T H I S JOURNAL, 68, 476, 1019 (1933); 
Fuoss, Physik. Z., 35, :59 (1934). 

(4) Fuoss and Kraus, T H I S JOURNAL, 55, 2387 (1933). A more 
rigorous treatment, which will eliminate the arbitrary limit in the 
integration, is proposed by Fuoss, Ref. 3. 

(5) Fuoss and Kraus, T H I S JOURNAL, 55, 3614 (1933). 

Only at the isoelectric point or, with less certainty, 
in the presence of buffers is the true molecular 
weight obtained. For egg albumin 34,000 was 
found. At other values of Pn or with insufficient 
or unsuitable buffering widely divergent values 
result from the phenomena of the mutual ac­
celeration and retardation of ions and charged 
particles. Thus charged colloids may be found 
to diffuse faster than ordinary molecules. 
tein molecules are not inherently spherical, but as far therefrom as 
possible in aqueous or mercury surfaces, spreading out to enormous 
sheets only a few A. in thickness [for collected references see N. K. 
Adam, "The Physics and Chemistry of Surfaces," The Clarendon 
Press, Oxford, 1930, pp. 79-82]; nevertheless, according to sedi­
mentation velocity and our diffusion measurements, egg albumin is 
spherical in solution at the isoelectric point. 
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triple ion interaction is equally as important as 
: the ion-ion interaction.) 

I t is the purpose of this article to calculate in 
first approximation the osmotic properties of 
electrolytes in solvents of low dielectric constant. 
In such solvents, the constants K and k3 describ­
ing the equilibria between ions, ion pairs and ion 
triples are of the order of 1O-18 and 10~4, respec-

i tively (Ref. 5, Table VII). At a total concen-
• tration of 10 ~4 mole per liter, for example, the 

fraction y of total solute existing as free ions is 
10 - 7 and the fraction y3 existing as triple ions is 
10~6, if we use the above round values for the con-

; stants, so that (1—y—Sy3), the fraction of solute 
existing as ions pairs, is practically unity. As 

. concentration increases, y decreases and 73 in­
creases, but the relative change in (1 — 7 — 3y3) is 
negligible. For simplicity, therefore, we shall 

. neglect at present all effects due to unpaired 
' charges, and consider the properties of a solution 
. of ion pairs. Except for the fact that an ion pair 

can dissociate into free ions under suitable con-
; ditions, an ion pair resembles a dipole molecule 
' with a fairly large moment. We shall make the 

further simplification that the ion pairs are as-
; sumed to be rigid dipoles; the energy of dis-
. sociation of quaternary ammonium salts in ben-
: zene, for example, is of the order of 20,000 calories, 

which is about 30 times RT. We have thus re-
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duced the problem to the calculation of the effect 
on osmotic properties due to dipole fields between 
solute particles. Debye6 has discussed this 
problem7 for the case of molecules which may be 
represented by spheres containing point dipoles, 
but as Debye himself and others8 have pointed 
out, this model is not sufficiently general to ac­
count for all experimentally observed cases of 
dipole solutes. Due to the fact that the inter­
action of dipole molecules at short distances de­
pends on the geometry of the structure, it is 
necessary to introduce at least two molecular 
parameters. 

For this discussion, we shall replace the real 
physical system by an idealized system in which 
the solvent is a homogeneous medium of di­
electric constant D at a temperature T, and where 
the solute particles are replaced by ellipsoids of 
rotation containing dipoles of strength fi at the 
center with axes parallel to the major axes of the 
ellipsoids.9 Let a and b be the major and 
minor axes of the ellipsoids, and let X = b/a. 
By evaluating the phase integral for a system 
containing N such particles in a total volume V, 
and thus determining the free energy, we are in a 
position to calculate the osmotic pressure for low 
concentrations. The result is 

p = p,(l-(N/V)F(\,x)) (1) 

where pt = NkT/V is the osmotic pressure of 
an ideal solution and x = n^/DkTa*. The func­
tion F depends in a rather complicated way 
on its arguments, but for large values of the 
parameter x compared to unity and for X2 < V2, 
an asymptotic expansion in x is readily obtained. 
For solutions of quaternary ammonium salts in 
benzene at 25°, for example, x is considerably 
greater than 10. 

There are two arbitrary constants, x and X, 
to be determined by experiment, which require 
two equations for their evaluation; for example, 
determinations at two different temperatures. 
In the next paper, the influence of intermolecular 
dipole fields on molecular polarization P will be 
investigated, and it will be shown that, as a 
limiting law for low concentrations 

(6) Debye, "Handbuch der Radiologic" (Marx), Leipzig, 1925, p. 
636 ff. 

(7) A closely related problem, the equation of state of a gas 
whose molecules contain permanent dipoles, has been treated by 
Keesom, Physik. Z., 22, 129 (1921). 

(S) Smyth, "Dielectric Constant and Molecular Structure," 
Chemical Catalog Co., New York, 1931, p. 176. 

(9) We prefer this choice for location of the dipole axis, because 
in ion pairs ( —) ( + ) the electrical axis is presumably the long axis 
of the molecule in most cases. 

P - P , ( l + ^ G ( X , x)) (2) 

so that a and X may be determined by measuring 
an osmotic property and the molecular polariza­
tion as a function of concentration. (The func­
tion G is positive or negative, according to the 
value of X; F is, of course, always positive.) 

II. The Osmotic Properties 
In order to obtain the osmotic properties of the 

solution, we must first calculate the free energy ^ 
of the solution by evaluating the phase integral 

e-HkT = I . . . J e-E/kT dqn dpiN 

Here, E is the total energy of the N solute par­
ticles to be averaged over all coordinates g^ 
and conjugate momenta p^ (i = 1, 2, 3; j = 
1,2, . . . , N). We may integrate at once over the 
momenta and obtain 

e-*/kT = / (D C.... \ e-V/kT dqn . . . dq3N (3) 

where U is the total potential energy of the system 
due to dipole forces, to be averaged over all space 
configurations. The mutual energy u of two di­
poles at a distance r is proportional to l/r !, and 
hence decreases quite rapidly with increasing 
distance. We therefore apply the device used 
in the calculation of Van der Waals forces:10 

each molecule is surrounded by a sphere of 
radius R > a, so chosen that the potential energy 
of two molecules is negligible compared to kT 
when their distance of separation is greater than 
R. The solution is assumed so dilute that we 
may neglect configurations in which more than 
two molecules are within a sphere of radius R. 
The integral in (3) may then be calculated as a 
power series in concentration N/ V by well-known 
methods.11 To first approximation in concen­
tration, the result is 

-4, = NkTIn V + N*kTI/2V + F(T) 
where F(T) is independent of volume and I is an 
abbreviation for the integral 

/ = C (e-u/kT - 1) dv (4) 

The integral I is extended over a sphere of radius 
R and u is the mutual potential energy of two 
molecules inside such a sphere. (By assumption, 
u/kT « 0 for r > R.) The osmotic pressure is 
obtained at once, by means of the thermodynamic 
relationship 

p = -(cy/avw 
(10) Herzfeld, Muller-Pouillet's Handbuch, Vol. I l l , p. 167. 
(11) Herzfeld, loc. cit.; Keyes, Chem. Rev., 6, 175 (1929). 
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which gives 
. NkT/. NI\ 

P=—V-2V) <5> 

Since the osmotic pressure pt of a force-free solute 
is NkT/ V, (5) may be written 

The integral in (6) is independent of concentra­
tion, so that we already see that in the limit of 
low concentrations, the osmotic deviations of the 
osmotic properties of a dipole solute from those 
of an ideal solute are proportional to concentra­
tion. There remains the task of evaluating the 
function on the right of (6) from the known force 
law between the particles. 

The integral / was defined by (4), where the 
integration represents an averaging over all 
possible relative positions of two dipoles / / and ^" 
within a sphere of radius, R. If we use polar co­
ordinates with the origin at the first dipole, the 
integral becomes 

/ = ~ f. . J (e-u/kT _ i) rHr dil dil' da" 

where dO, dQ' and dQ" are the elements of solid 
angle which contain, respectively, the line r 
joining M' with p."', the axis of /M' and the axis of 
/x". With this definition of angles, the potential 
energy of two dipoles12 is, by Coulomb's law 

u -— ~—3 (sin 8 ' sin 8" cos <p — 2 cos 8 ' cos 9") (7) 

We may integrate at once over it and 

I d<p' = 2 TT, since these angles do not appear in 

the exponent, giving 
1 * \ f f ^eu/kT " 1^rHr sin e'd0'sin e" dB" dip" 

(8) 
In its present form the integral is a function of 

the upper limit for distance r = R. If we sub­
stitute a new variable of integration for one of the 
angles, defined by 

€ = + V3 cos2 6' + 1 
we may carry out explicit integration over two 
variables, which gives the integral 

(12) The energy (7) is, of course, the energy for two Point dipoles. 
In the case of ion pairs, the two charges are separated by a finite 
distance, and a rigorous treatment demands that we retain the fur­
ther terms of the expansion of the potential in spherical harmonics. 
These terms involve higher powers of (1/r) than the cube and corre­
spond to quadrupole and higher interactions, and are neglected here. 
The ion-ion interaction involves an energy proportional to XJr 
and the ion triple equilibrium an energy proportional to IJr1. In 
(7), we are therefore taking into account the next term of the formal 
series which can be set up to describe the mutual interaction of ions 
in solution, and higher terms afe for the present not taken into ac­
count. 

where Z = /x2/DkTrs and p, the lower limit for r, 
corresponds to contact of the molecules in some 
orientation defined by the angles. In this form, 
we can investigate conveniently the influence of 
the upper limit. If we expand the integrand as 
a power series in r, we note that the first term is 
proportional to r~4, which integrates to r~z. 
The lower limit p is of the order of molecular 
dimensions, a, so that, on substituting limits of 
integration, we obtain a term roughly proportional 
to (R~3—a~z). By choosing R large, we can 
make its contribution to the result negligible, 
and the same argument applies to all succeeding 
terms. For practical purposes, therefore, we may 
replace the upper limit by r = <», leaving our 
result independent of the choice of R. 

We see, then, that we are able to express the 
integral (8) in the form of a (convergent) infinite 
integral. This integral represents contributions 
from all possible configurations of dipole pairs; 
but of these, the ones corresponding to small 
values of the distance r will be the most important, 
due to the appearance of l/r3 in the exponential 
function of the integrand. Of these configura­
tions, in turn, the most important will be those in 
which the dipoles are in and near the position of 
lowest mutual potential energy at contact. 
When X = 1, i. e., in the case of spherical mole­
cules, the stable position, where the two dipoles 
are parallel and in the same line according to (7), 
corresponds to u = — 2xkT. When X = \/-V2, 
the potential energy in the above parallel position 
is the same as that for the dipoles antiparallel and 
the ellipsoids in contact at the ends of their 
minor axes; these two configurations are then 
equally probable. When X < 2_ ' / 3 , the anti-
parallel position is the stable (and most probable), 
with u = —X~sxkT. Here r = Xa = b, 6 ' = 
TT/2, 6" = ir/2 and <p" = w. We shall limit our 
discussion to the case where the antiparallel posi­
tion is the stable position and consider cases where 
X < 2~Vs (i. e., < 2~~Vs). We may visualize the 
integral as the (hyper-) volume under a (hyper-) 
surface in r, 9 ' , 0", <p" 4-space; in view of the fact 
that the numerically large parameter x appears 
in the exponent, we see that the integrand has a 
very high peak over the point (6, x/2, v/2, ir) from 
which it falls off rapidly in all directions integra-
bly to zero. The main contribution to the 
integrand then is in the neighborhood of this 
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peak, which suggests that we look for the asymp­
totic expansion of the integral in terms of x. 
This asymptotic expansion will have the con­
ventional form 

F{. »0+? + 3 + - ) 
where F(x) takes into account the rapid variation 
of the function with changing argument, and the 
quantity in parentheses is the semi-convergent 
series, whose total value changes only slowly with 
x where * is large. We shall retain only the first 
term of the series, and consistently drop all terms 
of order x~l or smaller as compared to unity. 

In order to obtain the desired expansion, equa­
tion (8) furnishes the most convenient starting 
point. In the region of the peak of the inte­
grand, we set 

T + e, 

e'-§+.,, 

c o s ^" = _ i + L _ 

- ( '+1^T* + K-D 
and integrate over the new variables e, ej, 62 and 
5 in the neighborhood of e = 0, ei = 0, etc. The 
method will be illustrated by the integration over 
<p" near <p" = w; in order to save space, the details 
of the other entirely analogous steps will be 
omitted. We have from (8) 

I ~ l \ J xsin0'iO' I s i n e ' W f rUr 
1 \ Je' ss - Je" ss- Jr sab 

exp I — cos 0 ' cos 6* ) > I exp I—— sin 6 ' sin 9" I 

cos ip" dp" 

where B = ̂ /DkT and unity has been neglected 
compared to the exponential function in the 
integrand. Substituting the expansion for <p" 
near <p" = v, we obtain 

1 ~ \ {} X? e x p (f*sin °'sin e" [x - f + • •]) * 
where we integrate over the region of e near zero. 
Writing A = B sin 9 ' sin 9 "/V3. this becomes 

l 
I - t{ }e-i ry*"'-dt 

Since A is numerically large (when Q' and 0" are 
near jr/2), we may replace the above expression by 

eA I e-A, >/> d* 

within the permissible error of x~x compared to 
unity. This integral is known, and gives 

eA V2T/A 

In a similar way, we integrate over the other vari­
ables, 6 ' , 9" and r near the peak of the integrand, 
and obtain the result 

Z5VA jr 
W Dk 

ze» 
DkT y'/t 

( l + o (*-i)) 

where 

and 

* = xi VDkT 

Gb-'P 

(9) 

(10) 

(H) 

Substituting this result in (6), we obtain for the 
osmotic equation 

fr, - p _ N / x V A M2 z e» . 
Po V \ 3 / DkT2yV> U ^ J 

where 2, defined by (11), depends on the ec­
centricity of the ellipsoidal model and y, defined 
by (10), is a function of the temperature, the 
dielectric constant of the solvent medium and the 
minor axis of the ellipsoid (or major axis and X). 

Equation (12) represents the limiting law (valid 
for low concentrations) for solutes where the 
dissolved molecules possess dipole fields. The 
result is subject to the mathematical and physical 
approximations made in the derivation. The 
important mathematical approximations depend 
on the facts that 

^Za1DkT » 1 
for electrolytic solutions in solvents of low di­
electric constant and that we have assumed a 
dilute solution of dipole molecules. The physical 
approximations are that we have neglected effects 
due to unpaired ions and have replaced the ion 
pairs by ellipsoids containing point dipoles. The 
result is therefore subject to the restrictions im­
plied in these assumptions. 

The writer takes this opportunity to thank 
Professor P. Debye for many valuable suggestions 
regarding the treatment of this problem. 

Summary 

1. The osmotic properties of a dilute solution 
of dipole molecules are derived, using an ellip­
soidal model to represent the solute particles. 

2. An explicit asymptotic expansion, valid 
for the case of large moments and solvents of low 
dielectric constant, is calculated in first approxi­
mation. This case corresponds to electrolytic 
solutions in such solvents. 
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